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a simple numerical method. Any combination of k and 
k' implies some q value by energy conservation, and 
the distribution of crystaUite orientations means that if 
the vectors ~:, x and q can form a triangle then there are 
some crystal grains which can produce phonon 
scattering. For a single crystal, the restriction of the 
fixed crystal orientation means that the allowed (k,k') 
values will not necessarily be represented by points on 
the grid which we use. In addition, a study of TDS in a 
single crystal requires a knowledge of the resolution 
function of the spectrometer. 
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Abstract 

The concept of generalized representation for structure 
seminvariants is introduced. When a structure semin- 
variant is estimated via a generalized representation an 
amount of a priori information can be exploited larger 
than that accessible via the mere representation. 

1. Introduction* 

Hauptman (1975) first suggested that a s.i. or a s.s. can 
be estimated with increasing reliability via a sequence 
of sets of diffraction magnitudes (sequence of nested 
neighbourhoods) each contained within the succeeding 

* Symbols and abbreviations are defined in the Appendix. 

0567- 7394/80/040704-08 $01.00 

one. Independently, Giacovazzo (1975) had already 
applied the idea to the one-phase s.s.'s in P i ,  whose 
estimation was performed via the magnitudes in their 
second neighbourhoods. Hauptman (1976)described 
heuristic methods of finding sequences of nested 
neighbourhoods for certain s.i.'s or s.s.'s. 

A more general method for estimating s.s.'s was 
described by Giacovazzo (1977) (from now on, paper 
I). For any s.s. ~, the method arranges in a general 
way the set of reflections in a sequence of subsets 
whose order is that of the expected effectiveness (in the 
statistical sense) for the estimation of ~. These subsets 
do not coincide in general with the corresponding 
nested-neighbourhood sequence given by Hauptman 
and were called phasing shells in order to stress this 
difference. Giacovazzo's method introduces the idea 
that any s.i. or s.s. • can be represented by one or 

© 1980 International Union of Crystallography 
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more sets { 7,} of s.i.'s 7, whose values are related to q) 
by constants which arise because of translational 
symmetry.  If the Ws are evaluated then ~ is evaluated 
too. Any set { 7,} is called a representation of ~.  

A general comparison between neighbourhood and 
representation concepts has been made (Giacovazzo, 
1980a; from now on, paper II). New theoretical aspects 
of the representation theory were there presented. In 
particular: (a) some algebraic properties of the s.s.'s 
of first and of second rank are described which make 
practical application easier and the probabilistic 
estimations of the s.s.'s more reliable; (b) the concepts 
of generalized first representation and of generalized 
first phasing shell are introduced which enable one, in 
favourable cases, to exploit new information into 
probabilistic calculations. In the present paper we 
introduce the concept of generalized upper rep- 
resentations and apply it to the probabilistic estimation 
of the s.s.'s of first rank. 

It was recognized in paper II that the concept of 
generalized first representation is of minor importance in 
the procedures for the estimation of the s.i.'s. There- 
fore in this paper no attempt to apply the concept of 
generalized representations to s.i.'s is made. 

In order to make the reading of this paper easier, we 
recall in § 2 some basic definitions in representation 
theory. In §§ 3 and 4 the generalized representations of 
the one-phase s.s.'s of first rank are defined. The same 
is done in § § 5 and 6 for the two-phase and the three- 
phase s .s . ' s  of first rank. The definition of the 
generalized representations for s.s.'s of higher order is 
strictly recursive and does not present any difficulty. 

2. Some basic definitions in representations theory 

Let 

O : A 1  (ph + A2 (ph + . . .  + h n ( P h  ~ (1) 

be the general expression for a s.s. 

2.1. The rank of the s.s. 

If at least one phase ~Ph and two symmetry operators 
C,  and Cq exist (R h may or may not be experimentally 
measured) such that 

7,x = O' + ~Pha~--(Phao 

= A 1 (ffhtR s + A 2 (ffh2R t + . . .  -I" A n ~h,R,,  -t- ~ThR p -  (~hRq 

(2) 
is a s.i., then ¢) is a s.s. of first rank. If • is a s.s. for 
which (2) does not hold, then two phases ~Ph and tpl 
four symmetry operators Cp, Cq, C i, Cj exist (R h and 
R~ may or may not be experimentally measured) such 
that 

I//1 = ~ t  l- ( f f h R p -  (PhRq + (PlR,- -  ~IRj 

= A 1 (ffhtR s 4- . . .  + A n ~Oh, R q- (~hRp-- (PhRq q" (~la l 

- -  (Plat ( 3 )  

is a s.i. In this case • is said to be a s.s. of the second 
rank. 

Thus, • = ~P246 is a s.s. of the first rank in P i ,  of the 
second rank in P21212r 

2.2. The first representation of the s.s. ¢~ 

The first representation of • is the collection of the 
s.i.'s 7,1 as given by (2) or (3) according to whether 
is a s.s. of the first or of the second rank. In both cases 
the first representation of q) will be denoted by { 7,}~. 
Since 

(ffhR = ( f f h -  2zchT, (4) 

any 7,1 differs from ~ by a constant which arises 
because of the translational symmetry.  

2.3. The first phasing shell 

The collection of the I EI magnitudes which are basis 
or cross magnitudes of at least one s.i. 7,1 ~ { 7,} 1 is the 
first phasing shell of • and is denoted by {B} 1. 

2.4. The upper representations of q~ 

For any 7,1 belonging to { 7,}1 we construct the s.i.'s 

7,2 = 7,1 + ~k-- ~Ok, 

where k is a free vector. The collection of the s.i. 7,2's is 
denoted by {7,}2 and is said to be the second 
representation of @. Likewise, the collections of the 
s.i.'s 7' 3 = 7,2 + ~PJ- ~Pl, where I is a free vector, is the 
third representation of @. The procedure and the 
definitions are recursive. 

2.5. The upper phasing shells of 

The collection of the I E I magnitudes which are basis 
or cross magnitudes of at least one s.i. 7,, ~ { ~u}, is the 
nth phasing shell of • and is denoted by {B }n. 

A general procedure which is able to obtain {B}, for 
any • is described in paper II. 

2.6. The generalized first phasing shell of • 

Let O, ~ ' ,  ~ " ,  .. .  be a set of s.s.'s for which one or 
more sequences 

= ~ ' +  ~"  + . . .  

can be found. The set theoretic union 

{B}~= {B} 1u {B'}] U {B"}] U... (5) 

is said to be the generalized first phasing shell of 
provided that q0, q)', ~ " ,  .. .  constitute a multipole 
whose order with respect to O is the same as that of the 
phase relationship associated with ~.  
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In order to give a numerical example in P i ,  let qo = 
9240 -1- 9668" Its first representation is the collection of 
the special quartets 

~g¢1 --  (/)240 + 9668 --  9454 --  (19454 

~'/~ = 9 2 4 0 -  (/)668 + (/9214 + 9214 

and its first phasing shell is 

{B}I = {R240, R668, R454, R214, R s, to,s, R428 }. 

Since q~' = (0240 and q~" = (0665 are one-phase s.s.'s of 
first rank, the first phasing shells {B'}I = {R240, Rno} 
and {B"} 1 = {R668, R334} arise. Then, in accordance 
with (5), 

{B}~ = {R240, R668, R454, R214, Rs,  10,8, R428, R120, R334 }. 

In paper II, the concept of the generalized first 
phasing shell was further enlarged by observing that 
information about ~ can be obtained by means of very 
special s.i.'s which estimate 2 ~. Thus, if ~ = Oh, + 0h~, 
then (see also Hauptman & Green, 1978) 

~/' = (~h, + 0h, Rp + 0h 2 + (Ph2R p, (h  I + h2)(l + Rp) = 0, 
(6) 

is a quartet and its value equals 2 ~  + a, where a is a 
constant which arises because of translational sym- 
metry. Since a is a known quantity the value of ~ '  can 
fix (with some ambiguity) that of ~. As a further 
example, let • = Oh, + Oh 2 -t- Oh 3. Then 

~r-P --  Oh, + 0hlR , + (}Oh 2 + 0h2R , + 0h, + 0h3R p, (7) 

wi th  (h  I + h 2 + h3) ( I  + Rp) = 0, is a sextet w h o s e  
value, because of (4), is 2 tp + a. 

We are therefore justified in assuming that the 
generalized first phasing shell of tp contains also the 
magnitudes belonging to the first phasing shells of the 
s.i.'s W' as given by (6) or (7) when g> is a two- or 
three-phase s.s. respectively. The conclusion may be 
generalized to the n-phase s.s.'s. 

3. The generalized second phasing shell for one-phase 
s.s.'s of  first rank 

I~ = 02h is a s.s. in P1. In accordance with § 2 its first 
and second representations are given by 

{ ~['/}1 --- 0 2 h -  0 h - -  Oh 

{ ~/}2 = { 0 2 h -  0 h - -  O h -  Ok -t- Ok}, 

from which 

{B}~= {R2h, Rh}, 

{B}2= {R~h, Rh, Rk, Rh+k, R2h+_k}. 

However, the quintets in the set 

{ ~u't2 = {02h-- 0h-k--  0h-k--  0k--  0kt 

also give information about 02h, which now depends on 

{B' }2 = {R2h, Rh,  Rh_+k, Rk,  R2h-k,  R2h-2k, R2k}. 

If k and --k are used in { ~u, } 2 then 02h may be estimated 
via the generalized second phasing shell 

{B} g =  {B}2 U {B'}2 

= {R2h , Rh, Rk, Rh+k, R2h+k , R2k, R2h+_2k}. (8) 

The procedure may be extended to any space group in 
the following way. Denoting a general one-phase s.s. by 
q~ = On = 0m-g,), its first and second representations 
are the sets 

{ ~[/}1 = {0H--  (}Oh + 0hR,}, (9) 

{ ~'/} 2 = { (}OH --  0h + 0hR, + 0k --  Ok }, (1 0) 

from which 

{B}I={RH, Rh}, 

{B}2 = {RH, Rh, Rk, RH+kRh+kRhRn+k}" 

It may be noted that when R n ¢ --I, h is a free vector 
under the condition (Giacovazzo, 1978a) 

h(l  --  R n) = H. (11) 

Thus, in P21 if H = (408) then h = (2k4), where k is a 
free index. We will denote by {h} the set of the vectors 
h which satisfy (11) and by {Rh} the corresponding set 
of observable magnitudes. 

Let us now recall a more useful expression for { V}2 
and { B} 2. In a centrosymmetric space group of order m 
for fixed h ~ {h} and k, one may construct the set of 
special quintets 

~/2 = 0 "  --  0h -F 0 h R n -  0kR, Jr- 0kRi' j = 1 . . . .  , m/2. 
(12) 

In (12), j varies over the subset of matrices not related 
by the centre of symmetry.  The second representation 
of 0H is then the collection of the special quintets (12) 
obtained when h varies over {h} and k only over the 
asymmetric region of reciprocal space. The cross 
magnitudes of any ~2 are then 

R H_+kR? Rh+_kR? RhRn+kR? j = 1, . . . ,  m/2. 
Since EhRp_+kS, is symmetry equivalent to  Eh+kRj, where 
Rj  = Rq R~ 1, the second phasing shell of 0H reduces to 

{ B } 2 =  {RH, Rh, Rk,  Rh+kR/~RH+kR fl j =  1 , . . . ,m} .  
(13) 

In a non-centrosymmetric space group, for fixed h 
{ h } and k the quintets 

~[-/2 = OH --  Oh + 0 h R . -  0kR 1 + 0kRfl j = 1 . . . .  , m 
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may be constructed, whose second phasing shell is 

{B}2 = {Rn, Rh, Rk, Rh_+kRj, Rn_+kaj, j =  1,. . . ,  m}. 
(13') 

If the fictitious (not belonging to the space group) 
symmetry operators Cm+ j = (--Rj,--Tj),  j = 1, ..., m 
are introduced, then (13') can be written down as (13) 
provided m' = 2m replaces m. 

The study of the joint probability distribution 

P(E H, {Eh} , {Ek}, {Eh+kR~} , {Eh+kR,} , j =  1 , . . . ,  m'), 
(14) 

is therefore suggested by (13) and (13'), where m' = m 
for centrosymmetric and m' = 2m for non-centro- 
symmetric space groups. Giacovazzo [1978a; see 
equations (36) and (40)] obtained from (14) prob- 
abilistic expressions which estimate ~0H in all the space 
groups. Practical applications of these formulae (Burla, 
Nunzi, Polidori, Busetta & Giacovazzo, 1980) showed 
that the estimates obtained via the second rep- 
resentation are remarkably more accurate than those 
via the well known Y, relationships. 

We observe now that, besides (10), the special 
quintets 

~¢~ = ~ 0 H -  (Ph+k + (P(h+k)R. "q- ( P k -  (PkR. 

also give information about ~0H. The important struc- 
tural difference between the quintets ~u 2 and 7t~ is that 
the ~U2's are constructed by adding and subtracting to 
the triplets in the first representation of ~0. the phases 
~0, whereas the ~"s  are the sum of a special three- 
phase s.s. and of a constant arising because of 
translational symmetry (i.e. q~k- q~kR)" The phasing 
shell which arises from / 7 ~' }2 is the set 

{B'} 2 = {R n, R h, Rk, RH+k, RhR.+k, Rh+kR , R .-kR,,, 

RH+k(I--R.), R h+k(l+R.), RhR.+k(I+R.), Rk(l- R.)}" 

Let us now find more useful expressions for { 71'}2 and 
{B'} 2. In a centrosymmetric space group, for fixed 
h C {h} and k, one may construct the set 

{ ~r-]' }2 = {(PH - -  ~0h+kRj -'{- (P(h+.kRl)R,, -{- (PkRj- -  (PkR,R,,' 

j = 1, . . . ,  m / 2 } .  (15) 

In (15), j varies over the subset of matrices not related 
by the centre of symmetry. After suitable algebriac 
treatment, the set of magnitudes in the phasing shells of 
the quintets in (15) may be written as 

{B' }2 = {R.,  Rh, Rk, Rh+kR ? RH+kR ? Rk(I_R,,) , 

Rh+kRj(I+R,), RH+kRj(I_R.), j = 1, ..., m}. 

(16) 

In a non-centrosymmetric space group, for fixed 
h C {hi and k, one may construct the set of quintets 

{ ~/ '  }2 = {(~H - -  (Ph+kRj + ~/7(h+kRl)Rn + (PkR 1 - -  (~kRIR,,' 

j =  1,...,m/. 

The set of magnitudes in their phasing shells is 

{ B ' }  2 = {R m R h, Rk, Rh_+kR} R tt_+kR? Rk(I-R.), 

Rh+kaj(,+R,), Rn_+kRj0-S,), j = 1, ..., m}. 

(17) 
As for the second representation, we introduce the 
fictitious (not belonging to the space group) symmetry 
operators Cm+ j = (--Rj,  -- Tj), j = 1, . . . ,  m. Then, (17) 
can be written as (16) provided m' = 2m replaces m. 

The set theoretic union 

{B/~ = {B}2 U {B'}2 

= {RH, Rh, Rk, R h+kR? RH+kR? R k(l-R,,), 

R h+kR./(l+R.), R H+kRj(I- R.), J = 1, . . . ,  m'  } 

(18) 
is defined to be the generalized second phasing shell of 
~0n. In (18), m' = m or m' = 2m according to whether 
the space group is centro- or non-centro-symmetric. 

In accordance with this definition, the generalized 
second representation of ~o. is the set theoretic union 

This result suggests the study of the joint probability 
distribution 

P(E., {El, i, {Ek}, {Eh+kR,}, {EH+kRj}, {Ek(i-a.)}, 
{Eh+kR,(I+R.)} , {EH+kR,(I_R.)} , j =  1 , . . . ,m ' ) ,  (19) 

where {E h} is the set of structure factors whose indices 
belong to {h}, {E k} is any chosen set in the asymmetric 
region of reciprocal space, and {Eh+kR}, • • J " ' ' '  
{En+ka,(,_a, )} are sets obtainable according to the 
specified conditions on h and k. 

Distribution (19) is able to exploit the knowledge of a 
number of magnitudes larger than that considered in 
(14). Since the information is of order 1 / N  3/2 in both 
cases (we deal always with quintets), we can expect 
that conclusive formulae arising from (19) will give 
more accurate estimates for q~ than those arising from 
(14). 

The reader can generalize the above method to the 
cases in which, for a given H, (11) can be satisfied by 
more matrices Rn and more sets/h}. Thus, in P2 ,2 ,2 , ,  
when H = (008) the two matrices !00 

R 2 = 1 and R 3 = 1 0 

0 0 i 

and, correspondingly, the two sets {h04 } and {0k4} 
satisfy (11). 

A probabilistic approach for the estimation of the 
one-phase s.s.'s via the magnitudes contained in their 
generalized second phasing shells is described in the 
next paper (Giacovazzo, 1980b). 
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4.  T h e  g e n e r a l i z e d  upper  p h a s i n g  shel ls  for o n e - p h a s e  
s.s. 's o f  first rank  

The generalized third representation is the collection of 
the special septets in 

{~/}3= {~r/2"t- ~01R--(~IRp, j ,p= 1, ..., m'/2} 

and in 

{~-/ '}3= {~[/i + ~01Rp-- ~/71Ro, j ,p= 1, ..., m'/2}. 

The generalized third phasing shell is then the set of 
magnitudes which are basis or cross terms of at least 
one septet in the generalized third representation. 

The definition of the upper phasing shells is now 
trivial. 

asymmetric region of reciprocal space. The generalized 
second phasing shell of q' is then 

{B}~ = {Rh+k, Rh, Rk, Rzh , Rzk , RI, 

R h+k+l, Rh+l, Rk+l, R2h+l, R2k+l, Ra, Rz(h+l), 

R 2(k+l), Rh+k+21}. 

As we see, 28 magnitudes are contained in the 
generalized second phasing shell of q~ in P i. 

If ~0h+ k and ¢Ph-k are themselves s.s.'s, the set {B} g will 
include the magnitudes R½(h+ k) tOO. 

The above procedure may be extended to any space 
group in the following way. q) = ~0.. + ~0v = ~0h,-h2 + 
~0 h,Ro+h,R" is the more general expression of a two- 
phase s.s. of first rank (Giacovazzo, 1979). Its first 
representation is the collection of the quartets 

5. T h e  g e n e r a l i z e d  s e c o n d  p h a s i n g  shel l  for  t w o - p h a s e  
s.s.'s o f  first rank  

~-" (~n+k "+" (~h--k is a s.s. in P[.  In accordance with 
§ 2 its first representation is given by the collection of 
quartets 

~/l = (Ph+k "+" ~ h - - k -  ( ~ h -  ¢Dh' 

~r-./~ : (~h+k-  ~0h-k -  ~ k - -  (~k' 

from which 

{B} I = {Rh+_k , Rh, Rk, R2h, R2k}. 
In accordance with §2.6, if ~Ph+k and ~0h-k are 
themselves s.s.'s, then 

{B}] = {Rh+k, Rh, Rk, R2h , R2k , R½(h+k) }. 

The second representation is the collection of sextets 

tt/2 = (Ph+k + ~Oh-k- ~ h -  (Ph + ~1-- ~1' (20) 

~u~ = ~0h + k-- ~0h - k -- ~0k -- ~0k + ~01-- ~01, (20') 

where i is a free vector in reciprocal space. Then, 

{B} 2 = {Rh+k , Rh, Rk, R2h, R2k, RI, Rh+k+l, Rh_+l, Rk+l, 

R2h+_l, R2k_+l}. 

~[/1 = (~v "+" ~0uRp + (Ph2R p --  ~0h2R q, 

~ = ~v + ~uRq + ~0h,Rp- (/gh,Rq, 

where hi and h 2 are free vectors under the condition 

( h I - -  h 2 = u 

- - h  I Rp + h 2 Rq = v. 

The sets of the vectors h I and h 2 will be denoted by {h~} 
and {h 2} and the sets of corresponding magnitudes by 
{Rh,} and {Rh~}. Then, 

{B}l={Ru, Rv, {Rh,}, {Rh2}, {Rh,(Ro-Ro)}, 

{Rh,(R.-R.)}, {ReR~+h,R.}, {Rv+h2R} }, 

where {Rh,(Rq_Rp){ . . . . .  {Rv+h2Rp} are sets defined 
according to the specified conditions on hi and h2. 

Joint probability distributions involving all the E 's  in 
{B}, have been studied by Giacovazzo (1979). The 
conclusive formulae, estimating q~ given {B} l, were 
tested in all the space groups up to orthorhombic: they 
can secure a good estimate of several two-phase s.s.'s 
(Giacovazzo, Spagna, Vickovid & Viterbo, 1979). 

If ~0 u and ~0~ are themselves one-phase s.s.'s, then, in 
accordance with § 2.6, 

In conclusion, 6 and 19 magnitudes are in the first and 
second phasing shells of q~ respectively. 

However, besides the sextets in (20) and (20'), the 
sextets 

ku2 = ~0h+k + q~h-k-- q~h+l-- ~0h+l + ~01 + ~01, (20") 

2 = ~Ph+k-- q~h-k-- ¢Pk+l-- (0k+t + ~Pl + ~01 
(20'") 

also give information about q~. If besides !, - I  is also 
used in (20") and (20'"), then we say that the 
generalized second representation of q~ is the collection 
of sextets 7/2, ku~, ~u~,, ~u~,,, when I varies over the 

{B}~= {R,,, R v, {Rh,}, {Rh,}, {Rh,(R _Ro)}, {Rh,(Rq_ Rp)} , 

{RuR,+h, Rp}, {R,+h,R }, IRk l, IRk:I}, (21) 

where { Rk,} and {Rk2} are the sets of the magnitudes 
belonging to the first phasing shells of ~0. and ~ov 
respectively. 

If at least one of 09., and ~0 v is non-centrosymmetric, 
then the cross vectors of the quartets which estimate 
2q~ must also be included in {B}3. The algebra of these 
very special quartets in all the non-centrosymmetric 
space groups up to orthorhombic is described by 
Giacovazzo & Vickovid (1980). 
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By means of the quartets in the first representation, 
the collection of the sextets 

(Pv + (ffuRp "Jr" (~h2R p - -  (ffh2R q + ( f f l -  (/91' (22) 

(fly -]- (ffuaq "3t- ( ~ h , a p -  (ffhlR q + ~ 7 1 -  (ffl (22') 

can be constructed. In a centrosymmetric space group 
and for fixed h~, h 2 and l, one may obtain the sets of 
sextets 

~/2 ~--- (fly + ~)uRp "t- (/)h2Rp - -  (/)h2Rq "1- ( P i l l / -  ~01Rfl 

j = 1 . . . .  , m/2,  (23) 

~/2 = (~v + ~uR o + (ffhtS p - -  (PhtR q + (~IR 1 - -  (~lRfl 

j = 1,. . . ,  m/2. (23') 

In (23) and (23'), j varies over the subset of matrices 
not related by the centre of symmetry. The second 
representation of q0 is then the collection of the special 
sextets (23) and (23') obtained when h i and h 2 vary 
over {h l} and {h 2} respectively and ! only over the 
asymmetric region of reciprocal space. The second 
phasing shell is then 

{B}2= {Re, Rv, {Rh,}, {Rh,}, {Rh,(R.-R.)}, {Rh2(Rq--R.)}, 

{RaRq+h, ap}, {Rv+h2R,}, {Ru+ml}, {Rv+m,}, 

/Rh, + IR//, {Rh, + IR,}, {Rht(Ro- R,) _+ IR,}, 

{ R h2(Rq-Rp)+_lR,}, { R uRo+ h,Rp _+IR, }, 
{Rv+h2R,+IR,}, j =  1, ..., m/2}. (24) 

In a way strictly analogous to that used for the 
one-phase s.s.'s, (24) is shown to represent the second 
phasing shell for non-centrosymmetric space groups 
too, provided m replaces m/2 in the algebraic ex- 
pression. 

We observe now that, besides (22) and (22'), the 
sextets 

(/)v -t'- (/)URp -t- ( /7 (hz+l )R - -  ( / ) (h2+l)Rq + (/71R q - -  (/)IRp, 

(/)v + (ffuRq + (P(ht+i)R p -  ~(h t+l )S  q + (/71Sq-- (fflRp, 

also give information about q0. The important struc- 
tural difference between the above sextets and those in 
(22) and (22') is the following: the sextets in (22) and 
(22') are constructed by adding and subtracting to the 
quartets in the first representation of qo the phase ~p~, 
whereas the above sextets are the sum of a special 
four-phase s.s. and of a constant arising because of 
translational symmetry. In a centrosymmetric space 
group of order m and for fixed h~, h2, I, we may 
construct the sets 

~'/;' = (/)v "+" (/)uRp -t- (/)(h2+lRj)Rp-- (/7(h2+lR/)Rq -t- (/)IRIR q 
- -  (/71R/Rq, j = 1,. . . ,  m/2, (25) 

I~/~t, = (ffV + ( P U R q -  (P(h,+IRj)Rp-- ~0(ht+lRj)Ra + (PIRjRq 

-- ~IR/Rp, J = 1,. . . ,  m/2. (25') 

The generalized second representation of • is now the 
collection of the special sextets (23), 23'), (25) and 
(25') obtained when h~ and h 2 vary over th~} and/h2} 
respectively and I only over the asymmetric region of 
reciprocal space. The generalized second phasing shell 
is then 

{B}~= {RwR ~, {Rh~}, {Rh2}, {Rh,(Rq_RA} 

{Rh2(Rq-R,)}, {RuRq+h,R,}, {Rv+h2Rp}, 

{Ru_+ls,}, {Rv+IR,}, {Rh,+_IR,}, {Rh,_+IR, }, 

{Rh,(Rq- Rp) + IR,}' {Rh2(Rq--Rp)+_IR / }, 

{RuRq+haRp+lRl}' {Rv+h2Rp+lRl}, {RI(Rp-Rq)} ,  

{ Rht(Rp--Ro)+I(Ro-Rq)R 1 }, { Rh2(Rp-Rq)+I(Rp-Ro)R 1 }, 
{Rh,+_I(Rp+Rq)RI }, {Rh2 +_ I(R, + Rq)R 1 }, 

{ R u  + I(R o - Rq)R, }' { R v  + I(Rp- Rq)Rj}' 

{ ,'Rv+h2Rp_+I(Rp+Rq)R 1 }, {RuRq+hIRp+I(Rp+Rq)Rj}, 
j = 1, . . . ,  m/2  }, (26) 

which is able to exploit much more information than 
/B/2. 

As previously suggested, (26) represents the second 
phasing shell for non-centrosymmetric space groups 
too, provided m replaces m/2 in the algebraic ex- 
pression. 

If ~0,, and tpv are themselves s.s.'s, then {B} g will 
include the same sets of magnitudes {Rk,} and {Rk2} 
included in (21). If at least one of ~0, and rpv is 
non-centrosymmetric then also the cross vectors of the 
quartets which estimate 2 ~ must be included in {B }~. 

The procedure so far described may be generalized 
to the cases in which, for given u and v, more pairs of 
matrices (Rp, Rq) and more pairs of sets ({hi}, {h2}) 
satisfy the equations 

h - h 2 = u 

--h 1 Rp + h 2 Rq = v. 

Upper phasing shells of • can be found on the basis of 
§4. 

6. T h e  g e n e r a l i z e d  p h a s i n g  shel ls  o f  the  s.s. 's o f  h igh  
order  

The algebraic procedure so far described enables one to 
obtain the generalized phasing shells of the s.s.'s of high 
order. With a view to making the reading of this paper 
easy we briefly deal only with the case of the 
three-phase s.s.'s. 

The first representation of • = ~0h + Ok + (~h+k+21 in 
P i is the collection of the quintet invariants 

~ = ~Ph + ~Pk-- ~Oh+k+21 + 2~01, (27 ' )  

~ '  = --~Ph + ¢Pk-- ¢Ph+k+21 + 2~Oh+ 1, (27") 
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~t/O'~ ' '  : (oh - -  (ok- -  (oh+k+21 + 2(ok+l, (27 '")  

t/_./]'" : - - ( o h - -  ( o k -  (oh+k+21--  2(oh+k+l '  (27 '" ' )  

whose first phasing shell is 

{ B }  1 = {Rh ,  R k ,  Rh+k+21,  RI ,  Rh+ l ,  Rk+ l ,  R h + k + l ,  R h + k ,  

Rh-k, Rh+21, Rk+21, Rh+2k+21, R2h+k+21, R21, 

R2h+21, R2k+21, R2h+2k+21 }. (28) 

A probabilistic formula which estimates q~ via its first 
phasing shell has been described by Giacovazzo 
(19786). 

The generalized first phasing shell {B}] may be 
constructed via the procedure described in § 2.6 [see 
also Giacovazzo (180a) for some practical examples]. 
The second representation of q~ is the collection of the 
septets 

~u~ = ~U] + (op--(op, (29') 

~TJ2"" - -  W ' " '  ( 2 9 " " )  - -  z 1 + (op--  (op, 

where p is a free vector in reciprocal space. 
Besides (29), the following septets may also be 

formed, all giving information about ~:  

(oh + (ok - -  (oh+k+21 + 2 ( o l + p - -  2(op, (30') 

- - (oh + (ok - -  (oh+k+21 + 2 ( o h + l + p - -  2(op, (30") 

(oh + (ok - -  (oh + k + 21 "+ 2(ok + I + p - -  2(op, (30" ')  

- - (oh + (ok - -  (oh + k + 21 + 2(oh + k + I + p 2(op. ( 3 0 ' " ' )  

The generalized second representation is the collection 
of the septets (29) and (30). Consequently, the 
generalized second phasing shell is the set of magni- 
tudes which are basis or cross terms of at least one 
septet (29) or (30). In accordance with the preceding 
paragraph, if (oh, (Ok, (oh+k+2~ or their combinations are 
themselves s.s.'s, then {B}~ contains also the magni- 
tudes belonging to their first phasing shells. 

In space groups with symmetry higher than P i  it 
was shown (Giacovazzo, 1980a) that the more general 
expression for a three-phase s.s. of first rank is 

A formula which estimates q) in P21 via suitable 
subsets of its first representation has been secured by 
Hauptman & Potter (1979). It may be noted that more 
trios of rotation matrices (R,,, R~, R v) can satisfy (31) 
so that more trios of sets ({hi}, {h2}, {h3}) can 
correspondingly be derived. 

The first representation is the collection of the special 
quintets (32): 

(ou, + (ouzR B "+" (ou.~RvRt~- (oh, + (Oh,R,~R~.RI~' (32') 

(OutRoR v + (Ou 2 + (Ou3R v -  (oh, + (Oh, RI3R,,R,.' (32") 

(OutR o + (Ou2R~R o + (Ou.~- (oh 3 + (Oh3RvRt3R o" (32" ')  

The first phasing shell is the collection of the magni- 
tudes which are basis or cross terms of at least one s.i. 
in (32). For the generalized first phasing shell see § 2.6. 
The second representation of q~ is the collection of the 
septets obtained by adding and subtracting to each s.i. 
in (32) the same phase ~pp, where p is a free vector in 
reciprocal space: 

{ ~/}2 : { ~'/1 + (op- -  (op}" (33) 

Besides (33), 

(ou~ + (Pu, Rt~ + (ou, Rva ~ - -  (o(ht+p) + (O(h,+p)RoRvRI~ + (Op 

- -  (OPRoR, R; ( 3 4 ' )  

(Ou~RaR v + (ou z + (Ou3R v -  (o(h~+p) + (o(h2+p)Rt~RoR v + (op 

- (OpR~RoR~, (34") 

and 

(Ou,Ra -{-- (Ou2R/3R a '{- ( o u 3 -  (o(h3+p) -{- (O(h3+P)RvR/3R ° + (op 

- -  (OpRvR/3Ro (34'")  

also give information about q~. The collection of the 
septets (33) and (34), when I varies over reciprocal 
space and (R,,, Rt~, Rv), (h~, h 2, h3) over the 
corresponding sets O f  rotation matrices and vectors 
satisfying (31), is defined to be the generalized second 
representation of q~. The generalized second phasing 
shell is consequently defined. For upper rep- 
resentations the technique described in § 4 can be 
applied. 

¢~ = (ou, + (ou z "+ (ou 3 = (Ph,-h2R p + (oh 2 -  h 3 Rv + (oh3-h,R o, 

where R~, R v, R,~ are suitable rotation matrices and h 1, 
h2, h 3 are free vectors in reciprocal space which satisfy 
the condition 

hi - -  hE R/3 = u l  

h2 --  h3 R v = Uz (31) 

h 3 --  h 1 R,~ = u 3. 

We will denote by {h I }, {h 2 }, {h 3 } the sets described by 
h 1, h z, h 3 respectively. 

7. C o n e h s l o n s  

The generalized representations of the s.s.'s of first rank 
have been defined together with an algebraic method 
for obtaining them. When generalized representations 
are used instead of the mere representations, a new 
amount of a priori information is available: it is 
therefore expected that more accurate estimates of the 
s.s.'s can be obtained. 

So far, the idea of generalized representation has 
been applied to: (a) the estimation of the centro- 
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symmetric two-phase s.s.'s of first rank via their 
generalized first representations (Burla, Nunzi, 
Giacovazzo & Polidori, 1980); (b) The estimation of 
the non-centrosymmetric two-phase s.s.'s of first rank 
via their generalized first representations (Busetta, 
Giacovazzo, Spagna & Viterbo, 1980); (c) The 
estimation of the one-phase s.s.'s of first rank via their 
generalized second representations (Giacovazzo, 
1980b). 

The results obtained in (a) and (b) improve previous 
results (Giacovazzo, Spagna, Vickovid & Viterbo, 
1979). It may be expected that the application of the 
probabilistic theory in (c) will be successful too. The 
application of the generalized upper representations to 
two- and three-phase s.s.'s is a difficult but not 
prohibitive task. 

APPENDIX 
Symbols and abbreviations 

m = number of symmetry operators in the space 
group 

N = number of atoms in the unit cell 
Eh = normalized structure factor 
R h -- magnitude of the normalized structure factor 
Cp = (Rp, Tp) = pth symmetry operator 
Rp = pth rotation matrix of the point group 

Tp = translation vector associated 
rotation matrix of the point group 

I = identity 3 x 3 matrix 
s.i. -= structure invariant 
s.s. = structure seminvariant 

with the pth 
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Abstract 

The concept of generalized second representation 
[Giacovazzo (1980). Acta Cryst. A36, 704-711] has 
been used in order to estimate the one-phase structure 
seminvariants of first rank. 

1. Introduction* 

In a preceding paper (Giacovazzo, 1978; from now on 
paper I), the estimation of the one-phase s.s.'s of first 

* Symbols and abbreviations are defined in the Appendix. 

0567-7394/80/040711-05501.00 

rank was carried out by means of the joint probabiilty 
distribution method. The a priori information exploited 
in the calculations was chosen according to the theory 
of representations of the s.s.'s (Giacovazzo, 1977). In 
particular, any one-phase s.s. ~ was estimated via its 
second representation: that is to say, the knowledge of 
the diffraction magnitudes belonging to the second 
phasing shell of @ was exploited in order to give a 
probabilistic estimate of @. 

Burla, Nunzi, Polidori, Busetta & Giacovazzo (1980) 
showed that the estimates of the one-phase s.s.'s via 
their second representation are in general considerably 
more accurate than the corresponding estimates via the 
~ relationships (Hauptman & Karle, 1953; Cochran 
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